top of page
The Science of Molecular Engineered Materials

The medical advances that Molecular Engineered Material such as the MET platform bring are only possible because of Nanomerics' scientific and technological advances in:

  • polymer synthesis

  • polymer analytical methodology

  • nanoparticle fabrication

  • nano-scale analytical processes

Engineering chemistry to control material properties

Drug - Particle Molecular Dynamics 

Chemoinformatics tools guided engineering

Nanomerics proprietary Molecular Engineered Materials are based on world leading know-how and scientific leadership in polymer nanotechnology.

Tight control of the chemical modifications of natural polymers is key to being able to control polymer physical chemistry precisely. Advances in analytical methodology developed by Nanomerics are necessary in order to confidently measure the relevant parameters. 

Specifically, our expertise enables the fabrication of nano-scaled polymer aggregates which interact with drugs or biological molecules in a controlled fashion.

The biocompatible polymers are tailored to form containers that package the drug and carry it across epithelial barriers to the target site and thus overcome delivery problems.

Scientific Publications

1.Patel, S. et al. A Self-Assembling Lipidic Peptide and Selective Partial V2 Receptor Agonist Inhibits Urine Production. Scientific reports 10, 7269 (2020).

 

2.Soundararajan, R., Wang, G., Petkova, A., Uchegbu, I. F. & Schatzlein, A. G. Hyaluronidase Coated Molecular Envelope Technology Nanoparticles Enhance Drug Absorption via the Subcutaneous Route. Molecular pharmaceutics 17, 2599–2611 (2020).

 

3.Odunze, U., O’Brien, F., Godfrey, L., Schätzlein, A. & Uchegbu, I. Unusual Enthalpy Driven Self Assembly at Room Temperature with Chitosan Amphiphiles. Pharmaceutical Nanotechnology 7, 57–71 (2019).

 

4.Pérez-Cantero, A. et al. Increased Efficacy of Oral Fixed-Dose Combination of Amphotericin B and AHCC® Natural Adjuvant against Aspergillosis. Pharmaceutics 11, 456 (2019).

 

5.Kanwal, U. et al. Doxorubicin-loaded quaternary ammonium palmitoyl glycol chitosan polymeric nanoformulation: uptake by cells and organs. International journal of nanomedicine Volume 14, 1–15 (2019).

 

6.Fisusi, F. A. et al. T-shaped Peptide Amphiphiles Self Assemble into Nanofiber Networks. Pharmaceutical Nanotechnology 5, (2017).

 

7.Godfrey, L. et al. Nanoparticulate peptide delivery exclusively to the brain produces tolerance free analgesia. Journal of controlled release : official journal of the Controlled Release Society 270, 135–144 (2017).

 

8.Soundararajan, R. et al. Direct in vivo evidence on the mechanism by which nanoparticles facilitate the absorption of a water insoluble, P-gp substrate. International Journal of Pharmaceutics 514, 121–132 (2016).

 

9.Fisusi, F. A. et al. Lomustine Nanoparticles Enable Both Bone Marrow Sparing and High Brain Drug Levels - A Strategy for Brain Cancer Treatments. Pharmaceutical Research 33, 1289–1303 (2016).

 

10.Lalatsa, A. et al. Chitosan amphiphile coating of peptide nanofibres reduces liver uptake and delivers the peptide to the brain on intravenous administration. Journal of controlled release : official journal of the Controlled Release Society 197, 87–96 (2015).

 

11.Serrano, D. R. et al. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Molecular pharmaceutics 12, 420–431 (2015).

 

12.Uchegbu, I. F. et al. The Oral and Intranasal Delivery of Propofol Using Chitosan Amphiphile Nanoparticles. Pharmaceutical Nanotechnology (2014).

 

13.Chooi, K. W. et al. Physical characterisation and long-term stability studies on quaternary ammonium palmitoyl glycol chitosan (GCPQ)--a new drug delivery polymer. Journal of Pharmaceutical Sciences 103, 2296–2306 (2014).

 

14.Uchegbu, I. F., Carlos, M., McKay, C. & Polymer, X. H. Chitosan amphiphiles provide new drug delivery opportunities. Wiley Online Library 63, 1145–1153 (2014).

 

15.Lalatsa, A., Schätzlein, A. G. & Uchegbu, I. F. Strategies To Deliver Peptide Drugs to the Brain. Molecular pharmaceutics 11, 1081–1093 (2014).

 

16.Wang, W., McConaghy, A. M., Tetley, L. & Uchegbu, I. F. Controls on polymer molecular weight may be used to control the size of palmitoyl glycol chitosan polymeric vesicles. Langmuir 17, 631–636 (2001).

 

17.Lalatsa, A. et al. A prodrug nanoparticle approach for the oral delivery of a hydrophilic peptide, leucine(5)-enkephalin, to the brain. Molecular pharmaceutics 9, 1665–1680 (2012).

 

18.Garrett, N. L. et al. Label‐free imaging of polymeric nanomedicines using coherent anti‐stokes Raman scattering microscopy. Journal of Raman Spectroscopy 43, 681–688 (2012).

 

19.Mazza, M. et al. Nanofiber-based delivery of therapeutic peptides to the brain. ACS nano 7, 1016–1026 (2013).

 

20.Le, H. T. B., Schatzlein, A. G. & Uchegbu, I. F. Polymer Hydrophobicity Has a Positive Effect on the Oral Absorption of Cyclosporine A from Poly(ethylenimine) Based Nanomedicines. Pharmaceutical Nanotechnology 1, 15–25 (2013).

 

21.Garrett, N. L., Lalatsa, A., Uchegbu, I., Schätzlein, A. & Moger, J. Exploring uptake mechanisms of oral nanomedicines using multimodal nonlinear optical microscopy. Journal of Biophotonics 5, 458–468 (2012).

 

22.Lalatsa, A. et al. Delivery of peptides to the blood and brain after oral uptake of quaternary ammonium palmitoyl glycol chitosan nanoparticles. Molecular pharmaceutics 9, 1764–1774 (2012).

 

23.Ahmad, S. et al. In silico modelling of drug-polymer interactions for pharmaceutical formulations. Journal of The Royal Society Interface 7 Suppl 4, S423-33 (2010).

 

24.Siew, A. et al. Enhanced oral absorption of hydrophobic and hydrophilic drugs using quaternary ammonium palmitoyl glycol chitosan nanoparticles. Molecular pharmaceutics 9, 14–28 (2012).

 

25.Qu, X. et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 7, 3452–3459 (2006).

 

26.Uchegbu, I. F. et al. Quaternary ammonium palmitoyl glycol chitosan--a new polysoap for drug delivery. International Journal of Pharmaceutics 224, 185–199 (2001).

bottom of page